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Reduction of System Order Using Power Spectral Density
Function-Generalization of Liaw's Dispersion Analysis

Man Gyun Na*
(Received November 25, 1993)

The method of model reduction lJased on dispersion analysis and the continued fraction is
extended to treat the system which has multiple poles or has simple or multiple poles on the
imaginary axis. Using the power spectral density function and preserving the dynamic modes
with large power contibutions, the denominator of the reduced model is obtained and its
numerator is obtained by using the continued-fraction method. This method is proved to give
better approximation to an original system through examples than other methods.
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1. Introduction
nary axis of Laplace domain. Therefore, the
method is extended to overcome its inability in
the present work.

2. Determination of the Denominator
Using Power Spectrum

To simplify the analysis, it is assumed that the
denominator of the transfer function has multiple
poles p" P2 of multiplicities m and r, respective
ly, and other poles are distinct.

The n-th order transfer function C(s) is given

Reduction of the system order enables one to
simplify the design and analysis of high-order
linear sys,tem. The method of reduction of system
order using dispersion analysis(Liaw et aI., 1986)

is known to be more prominent than other
methods(Shamash, 1975; Chen et aI., 1980). In
this method, the denominator of the reduced
model is determined from the viewpoint of energy
contribution to the system output; the dynamic
modes (eigenvalues) with dominant energy contri
butions are preserved. In order to give each
dynamic mode equal weighting, input-exciting
signals are assumed to be white noises which are
constant for frequencies. Therefore, the total
power of each dynamic mode can be obtained by
intergrating the power spectral density function
over entire frequency range. By preserving the
dynamic modes with large power, the denomina
tor of the reduced model is obtained. Its numera
tor can he found by using the continued-fraction
method.

The main disadvantage of this method is its
inability in treating the system with multiple
poles, or simple or multiple poles on the imagi-
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as

where

+ ± Ci,i=III+r+1 (s +Pi)

_ 1 { d
j

[B(s) III]}alll-j--" dsJ ~A() s+ PI) ,J. s s=-p,

j=O, 1.. ··, m-l

l{dj[B(s) r]}br-j=-" ds j ~A() s +P2) ,J. s s'=-P,

j=O, 1, "', r-l

Cj= [AB«s»(s +Pj)] ,
s S=-Pi

j=m+r+ l , m+r+ 2, "', n·

(1)
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(7)

+2~± aibj rei + j -:-1)
i~1j~1 (i -1)!(j -1)! (PI +P2)z+J I

+2± ± ~.b-,,:iC,-,,-j~~---"r-,(,-,-i)'---r
i~1j~m+T+1 (z -1)! (P2+ Pj)'

+2 ~ ~ ~iaj r(j)]} (8)
i~m+r+1j~1 (J -I)! (PI +p;)j .

The term, which contains ai(i= I"",m), b;(i=

I,.··,r), and ci(i=m+ r+ I"",n), respectively,
represents the importance of each dynamic mode.
For example, the power contributions, {PC(al)}

and {PC(am)}, of the dynamic modes, al( = alls
+Pl) and am(=am/S+pi)m, respectively, are as
follows:

where the auto-correlation of the white noise,

E{7}( v )7}(v')} = a/.

Note that (oro re-atdt r( n +1), where r
)0 a n+ 1

means the gamma function. Eq. (7) is propagated
as follows:

(4)

(5)

(2)
n

+ ~ cie- Pit .
i=m+r+l

Integrating the power spectrum over frequncies
gives

where Ryi r) is the auto-correlation function of
the output and Cyy(f) the power spectral density
function of the output.

In particular, at r=O, we obtain

Therefore, without solving the power spectral
density function, we obtain the energy contribu
tion of each dynamic mode. Input-exciting signals
are assumed to be white noises 7}(t) in order to
give each dynamic mode equal weighting.

The response of system is

The unit impulse response is obtained from Eq.
(I):

Through Fourier transformation applied in the
case of deterministic power and energy signals, a
one-to-one mapping between time and frequency
domains is established. The power spectral den
sity function and auto-correlation function are
related for stationary signals. If one-sided power
spectral density function is used, integration is
carried out only over positive frequencies(Bendat
et aI., 1986):

Ryir)=100

Cyy(f)cos(2njr) dj. (3)

Substituting Eq. (5) into Eq. (6) produces

100

Cyy(f)dj = E {1:C( t - v') 7}( v')dv'

1:C(t - v )7}(v)dv}

= 1:1:c(t- v)c(t- v')

E{7}( v )7}( v')}dvdv'

m a a rei + m - I)
PC(am)=~(m_l)h;·_I)! (2PI)i+m I

+± ambi r(i+m-I)
i~l(m-I)!(i-I)! (PI+P2)z+m I

+ ± amCi rem)
i~m+T+I (m-I)! (PI+p;)m·

Neglecting the dynamic modes that have small
power contribution of all dynamic modes corre-
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The coefficients hi are obtained from the coeffi
cients Aj,k of Eq. (11) by forming a Routh
array(Bosley et aI., 1973):

where BI,I> B I ,2, .. ·,BI,I+l are known and B 2,I> B2,2,

''',B2.1 can be found by matching the time
moments.

Equation (1) is rewritten as

C(s) A2,I + A2,2S + A2,3S
2+ ... + A2,IIS II-

1

AI,I + AI.2S + A I,3S
2+ .". + AI,II+lSII'

(11)

The continued fraction expansion of Eq. (11)
about S =0 and S = 00 has the following form:

(12)

( 13)A j - 2,IAj - I ,k+1

A j - I •I

1

B 2,1 + B 2,2S + ... + B2,IS I

(s + PI)(S + Pz)···(s + PI)

B 2,I + B 2,2S + B 3,IS2+ ... + B2,ISI-1

BI,I + B I,2S + BI,3S
2+ .." + BI,I+lSI

(10)

R(s)

C(S)

sponding to a multiple pole, there is a possibility
of reducing the system order. As it were, if the
importance of the dynamic mode am( = am/(S

+PI)m) of a multiple pole Pli is relatively small in
comparison with that of other dynamic modes ai

(=aJ(s+PI)i), i= 1,2"",(m-l), the mul
tiplicity of the multiple pole PI can be reduced
from m to (m - 1). The relatvie importance of
each dynamic mode is estimated in terms of the
ratio of its power contribution to the total power.

Since the power contribution of a complex pole
due to Eq. (8) is a complex number which is
meaningless and also, has a complex conjugate,
its power contribution is defined as the sum for
each conjugate pair of a complex pole in order to
be a meaningful real number.

Equation (8) does not provide solutions for the
transfer function which has simple or multiple
poles at the imaginary axis of Laplace domain.
Considering the transfer function that has a
multiple pole with multiplicity m at the origin
and of which other poles are distinct, the transfer
function of this system is fractionated partially as
follows:

The reduced transfer function can also be expan
ded in the form of Eq. (12), i. e.

(14)

(15)

(16)

B j - 2,IBj - I ,k+1
Bj-I,I -

Letting the first I coefficient hi and h~ of these
two series be identical, then the parameters B2,1>

B2.2, ... ,B2,1 of the numerator of the reduced
model cna be solved from the first I terms of Eqs.
(14) and (16).
Example 1
In order to examine the system which has a
multiple pole, consider the fifth-order transfer
function as follows:

B'(s) _~_C_i_
A'(s) - i=1 S +p/ .

Therefore, applying C'(s) that the dynamic mode
of the pole, zero, is removed, to Eq. (8) we can
find the power contribution of each dynamic
mode.

Since it does not matter whether a pole is
simple or not in determining the numerator, we
will consider the retained dynamic modes be - PI>

- P2, ... , -Pl' The reduced model is as follows:

where

3. Determination of Nurmerator
Using Continued Fraction Method

C(S)
2.604s4 + 25.046s3 + 84.992s 2 + 118.742s +56.216

S5+ 12s4+55s3+ 120s2+ 124s+48
± gi +±~
i=1 (s +PI)' i=3 S+Pi'

(17)

The parameters of Eq. (17) are listed as follows: PI=2, gl= 100.0,
g2=O.l,
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The parameters B2.1 and B2.2 are obtained from
Eqs. (13) through (16). The reduced model is

/J3= 1, g3=0.2,

P4=3, g4= 10.0,

Ps=4, gs=20.0.

The power contribution of each dynamic mode Pi

of the transfer function C(s) is given in Table 1.

By preserving the dynamic modes, gils +PI and
gsls +Ps, the denominator can be expressed as

The unit step responses of the original system and
the reduced order model are shown in Fig. 1.

From the graph it can be seen that R(s) is good
approximation to C(s).

Example 2

In order to examine the system which has multi
ple complex poles, consider the following sixth

order transfer function:

R(s) B 2.I+B2.2S

8+6s+s2 •
(18)

C(s)
2.613s+9.369

s2+6s+8
(19)

C(s) 20.5ss+ 153s4+458.2s3+ 733.4s2+ 633.2s + 246.4
s6+9ss+34s4+ 72s3+92s2+68s +24

-~+ ~ +~+ ~ +~+~
- s + PI (s + PI)Z s + /J3 (s + P3)2 S + Ps s + P6'

(20)

where

/J3= -1 + i,

gl=5.0,

g2=0.05+0.05i,

g3=5.0,

g4=0.05-0.05i,

gs= 10.0,

g6=0.5,

as the sum for each conjugate pair.
From the table, since the power contributions

of the dynamic modes gils +PI' g31s +P3 and gsl

s +Ps are dominant, the reduced model can be

15 ,-------------------,

Fig. 1
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where Ph P3, g2 and g4 are complex numbers.
The power contribution of each dynamic mode

of the transfer function C(s) is given in Table 2.

The power contributions of gds +PI and g31s
+ /J3 forms a complex conjugate.

Also, the power contributions of gzl(s +PI)Z

and g4/(s +Pz)Z forms a complex conjugate.
Therefore, their power contributions are defined

Table 1 Power contribution of each dynamic mode

Dynamic mode Power contribution
Table 2 Power contribution of each dynamic mode

~ 3040.625 (82.004%) Dynamic mode Power contributions+P,

gz 0.703 ( 0.019%) gl ~ 56.364 (62.614%)(s+ PI)2 s+P, ' S+P3

g3 7.989 ( 0.215%) g2 g. 0.334 ( 0.371%)
S+P3 (S+PI)2' (s + P3)Z

~ 245.778 ( 6.629%) ~ 31.140 (34.593%)
s+p. S+ Ps

~ 412.760 (11.132%) ~ 2.180 ( 2.422%)
S+ Ps s+ P6
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expr,essed as

R(s)- B 2,1 +B 2,2S+ B 2,3S
2

- 4+6s+4s2+S3 (21 )

By preserving the dynamic modes corresponding

to P2 and P4, the denominator of the reduced
model can be expressed as

G(s) 14.2s4 +94.8s 3 +202.2s2+ 146.8s +24
S5 + lOs 4 + 35s3 + 50s2+ 24s

The parameters B 2,I> B 2,2 and B2,3 are obtained
from Eqs.(13) through (16). The reduced model is

G( )- 20.38s2+50.78Is+41.068 (22)
S - s3+4s2+6s +4 -

The unit step responses of the original system and
the reduced order model are shown in Fig. 2.
Example 3

This example is chosen to compare the

responses of the reduced order model obtained by
this method with the responses of reduced models

obtained by Chen et al. (1980) and Shamash
(1975), and to examine the system which has a

pole at the arigin. Consider the fifth-order trans

fer function as follows:

The parameter B2,I and B 2,2 can be solved from
Eqs. (13) through (16). The reduced model is

(25)

(26)

13.2s + 32.266 + 1
s2+6s +8" s-

14.2s2+ 38.266s + 8
s3+6s2+8s

R(s)

R(s)

R(s)_~:87459s+2.82213+ I
- S2+ 1.4577s +0.6997" S
(by Chen et al.)

R(s) 9.228s + 8.067 +1
s2+3s+2 s

(by Shamash)

The reduced order models of the same original
system as that treated by Chen et al. and Shamash
are given as follows:

(23)=-.1+ G'(s),
s

where
12..0 ---.- ..-----------

The parameters of Eq. (24) are listed as follows:

PI = I, gl =0.2,

P2=2, g2=2.0,

P3=3, g3= 1.0,

P4=4, g4= 10.0.

The power contribution of each dynamic mode Pi

of the transfer functin G'(s) is given in Table 3.

G'(s)=±-~-
i~IS+Pi

(24) 10.0

8.0

,
I~ 6.0

"
4.0

20

._".L-L-'----.L.-'-._~""_L~
1.0 2.0 3.0 4.0 5.0

Time (Seconds)
60

Fig. 3 Unit step responses of the original system and
the reduced models

Table 3 Power contribution I)f each dynamic mode

Dynamic mode Power contribution

0.603 ( 2.396%)

4.867 (19.330%)

1-1J-~_1f~·--l'------"'4."'"b---L-----=-'5.~O
Time (Seconds)

2.045 ( 8.123%)

Fig.:! Unit step responses of the original system and
the reduced model

17.662 (70.151%)
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persion analysis and the continued fraction is

extended to treat the system which has multiple
poles, or has simple or multiple poles on the

imaginary axis. The power contribution based on

power spectral density function is used for order
reduction. By discarding the dynamic modes with

small power contributions, the denominator of

the reduced model is obtained. The continued

fraction method is used to determine the numera
tor of the reduced model.

Since the power contribution of each dynamic

mode is easily obtained through arithmetic calcu

lation, it is computationally easy to program.
Through examples, this method is known to give

better approximation to the original system than

other methods and to be able to treat the system
which has multiple poles, and simple or multiple

poles on the imagniary aixs.
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trlrlrlrlt: by Shamosh

10 -J 10 -2 10 -I 1 10 10 2 10 J

Time (Seconds)

5.0

o ~;,O---'-"""-1.;'0---'-----02.\;-0---'----'-3.\;-0---'--'-4;'0---'-----05 .;'0---'----e'6.0

Time (Seconds)

10.0

o
D-

o
o

The method of model reduction based on dis-

Fig. 4 Unit impulse responses of the original system
and the reduced models

4. Conclusion

Fig. 5 Spectral density functions of the original
system and the reduced models

The unit step responses of the original system and

the reduced order model of this method and other
methods (by Chen et al. and Shamash) and their

impulse responses are shown in Figs. 3 and 4,
respectively. Also, their power spectral density

function G'yy(f) of which the transfer function G'

(s) is generated by removing the term 1/s, is
shown in Fig. 5 where input signals are assumed
to be white noises. It can be said that the present
method gives better approximation to the orginal
system than other methods.


